LogoLogo
HomeAcademyLoginTry for free
  • Welcome
  • What's new
    • Q2 2025
    • Q1 2025
    • Q4 2024
    • Q3 2024
    • Q2 2024
    • Q1 2024
    • Q4 2023
    • Q3 2023
    • Q2 2023
    • Q1 2023
    • Q4 2022
    • Q3 2022
  • FAQs
    • Accounts
    • Migration to the new platform
    • User & organization setup
    • General
    • Builder
    • Workflows
    • Data Observatory
    • Analytics Toolbox
    • Development Tools
    • Deployment Options
    • CARTO Basemaps
    • CARTO for Education
    • Support Packages
    • Security and Compliance
  • Getting started
    • What is CARTO?
    • Quickstart guides
      • Connecting to your data
      • Creating your first map
      • Creating your first workflow
      • Developing your first application
    • CARTO Academy
  • CARTO User Manual
    • Overview
      • Creating your CARTO organization
      • CARTO Cloud Regions
      • CARTO Workspace overview
    • Maps
      • Data sources
        • Simple features
        • Spatial Indexes
        • Pre-generated tilesets
        • Rasters
        • Defining source spatial data
        • Managing data freshness
        • Changing data source location
      • Layers
        • Point
          • Grid point aggregation
          • H3 point aggregation
          • Heatmap point aggregation
          • Cluster point aggregation
        • Polygon
        • Line
        • Grid
        • H3
        • Raster
        • Zoom to layer
      • Widgets
        • Formula widget
        • Category widget
        • Pie widget
        • Histogram widget
        • Range widget
        • Time Series widget
        • Table widget
      • SQL Parameters
        • Date parameter
        • Text parameter
        • Numeric parameter
        • Publishing SQL parameters
      • Interactions
      • Legend
      • Basemaps
        • Basemap selector
      • AI Agents
      • SQL analyses
      • Map view modes
      • Map description
      • Feature selection tool
      • Search locations
      • Measure distances
      • Exporting data
      • Download PDF reports
      • Managing maps
      • Sharing and collaboration
        • Editor collaboration
        • Map preview for editors
        • Map settings for viewers
        • Comments
        • Embedding maps
        • URL parameters
      • Performance considerations
    • Workflows
      • Workflow canvas
      • Results panel
      • Components
        • Aggregation
        • Custom
        • Data Enrichment
        • Data Preparation
        • Generative AI
        • Input / Output
        • Joins
        • Parsers
        • Raster Operations
        • Spatial Accessors
        • Spatial Analysis
        • Spatial Constructors
        • Spatial Indexes
        • Spatial Operations
        • Statistics
        • Tileset Creation
        • BigQuery ML
        • Snowflake ML
        • Google Earth Engine
        • Google Environment APIs
        • Telco Signal Propagation Models
      • Data Sources
      • Scheduling workflows
      • Sharing workflows
      • Using variables in workflows
      • Executing workflows via API
      • Temporary data in Workflows
      • Extension Packages
      • Managing workflows
      • Workflows best practices
    • Data Explorer
      • Creating a map from your data
      • Importing data
        • Importing rasters
      • Geocoding data
      • Optimizing your data
    • Data Observatory
      • Terminology
      • Browsing the Spatial Data Catalog
      • Subscribing to public and premium datasets
      • Accessing free data samples
      • Managing your subscriptions
      • Accessing your subscriptions from your data warehouse
        • Access data in BigQuery
        • Access data in Snowflake
        • Access data in Databricks
        • Access data in Redshift
        • Access data in PostgreSQL
    • Connections
      • Google BigQuery
      • Snowflake
      • Databricks
      • Amazon Redshift
      • PostgreSQL
      • CARTO Data Warehouse
      • Sharing connections
      • Deleting a connection
      • Required permissions
      • IP whitelisting
      • Customer data responsibilities
    • Applications
    • Settings
      • Understanding your organization quotas
      • Activity Data
        • Activity Data Reference
        • Activity Data Examples
        • Activity Data Changelog
      • Users and Groups
        • Inviting users to your organization
        • Managing user roles
        • Deleting users
        • SSO
        • Groups
        • Mapping groups to user roles
      • CARTO Support Access
      • Customizations
        • Customizing appearance and branding
        • Configuring custom color palettes
        • Configuring your organization basemaps
        • Enabling AI Agents
      • Advanced Settings
        • Managing applications
        • Configuring S3 Bucket for Redshift Imports
        • Configuring OAuth connections to Snowflake
        • Configuring OAuth U2M connections to Databricks
        • Configuring S3 Bucket integration for RDS for PostgreSQL Exports in Builder
        • Configuring Workload Identity Federation for BigQuery
      • Data Observatory
      • Deleting your organization
    • Developers
      • Managing Credentials
        • API Base URL
        • API Access Tokens
        • SPA OAuth Clients
        • M2M OAuth Clients
      • Named Sources
  • Data and Analysis
    • Analytics Toolbox Overview
    • Analytics Toolbox for BigQuery
      • Getting access
        • Projects maintained by CARTO in different BigQuery regions
        • Manual installation in your own project
        • Installation in a Google Cloud VPC
        • Core module
      • Key concepts
        • Tilesets
        • Spatial indexes
      • SQL Reference
        • accessors
        • clustering
        • constructors
        • cpg
        • data
        • http_request
        • import
        • geohash
        • h3
        • lds
        • measurements
        • placekey
        • processing
        • quadbin
        • random
        • raster
        • retail
        • routing
        • s2
        • statistics
        • telco
        • tiler
        • transformations
      • Guides
        • Running queries from Builder
        • Working with Raster data
      • Release notes
      • About Analytics Toolbox regions
    • Analytics Toolbox for Snowflake
      • Getting access
        • Native App from Snowflake's Marketplace
        • Manual installation
      • Key concepts
        • Spatial indexes
        • Tilesets
      • SQL Reference
        • accessors
        • clustering
        • constructors
        • data
        • http_request
        • import
        • h3
        • lds
        • measurements
        • placekey
        • processing
        • quadbin
        • random
        • raster
        • retail
        • s2
        • statistics
        • tiler
        • transformations
      • Guides
        • Running queries from Builder
        • Working with Raster data
      • Release Notes
    • Analytics Toolbox for Databricks
      • Getting access
        • Personal (former Single User) cluster
        • Standard (former Shared) cluster
      • Reference
        • lds
        • tiler
      • Guides
      • Release Notes
    • Analytics Toolbox for Redshift
      • Getting access
        • Manual installation in your database
        • Installation in an Amazon Web Services VPC
        • Core version
      • Key concepts
        • Tilesets
        • Spatial indexes
      • SQL Reference
        • clustering
        • constructors
        • data
        • http_request
        • import
        • lds
        • placekey
        • processing
        • quadbin
        • random
        • s2
        • statistics
        • tiler
        • transformations
      • Guides
        • Running queries from Builder
      • Release Notes
    • Analytics Toolbox for PostgreSQL
      • Getting access
        • Manual installation
        • Core version
      • Key concepts
        • Tilesets
        • Spatial Indexes
      • SQL Reference
        • h3
        • quadbin
        • tiler
      • Guides
        • Creating spatial index tilesets
        • Running queries from Builder
      • Release Notes
    • CARTO + Python
      • Installation
      • Authentication Methods
      • Visualizing Data
      • Working with Data
        • How to work with your data in the CARTO Data Warehouse
        • How to access your Data Observatory subscriptions
        • How to access CARTO's Analytics Toolbox for BigQuery and create visualizations via Python notebooks
        • How to access CARTO’s Analytics Toolbox for Snowflake and create visualizations via Python notebooks
        • How to visualize data from Databricks
      • Reference
    • CARTO QGIS Plugin
  • CARTO for Developers
    • Overview
    • Key concepts
      • Architecture
      • Libraries and APIs
      • Authentication methods
        • API Access Tokens
        • OAuth Access Tokens
        • OAuth Clients
      • Connections
      • Data sources
      • Visualization with deck.gl
        • Basemaps
          • CARTO Basemap
          • Google Maps
            • Examples
              • Gallery
              • Getting Started
              • Basic Examples
                • Hello World
                • BigQuery Tileset Layer
                • Data Observatory Tileset Layer
              • Advanced Examples
                • Arc Layer
                • Extrusion
                • Trips Layer
            • What's New
          • Amazon Location
            • Examples
              • Hello World
              • CartoLayer
            • What's New
        • Rapid Map Prototyping
      • Charts and widgets
      • Filtering and interactivity
      • Summary
    • Quickstart
      • Make your first API call
      • Visualize your first dataset
      • Create your first widget
    • Guides
      • Build a public application
      • Build a private application
      • Build a private application using SSO
      • Visualize massive datasets
      • Integrate CARTO in your existing application
      • Use Boundaries in your application
      • Avoid exposing SQL queries with Named Sources
      • Managing cache in your CARTO applications
    • Reference
      • Deck (@deck.gl reference)
      • Data Sources
        • vectorTableSource
        • vectorQuerySource
        • vectorTilesetSource
        • h3TableSource
        • h3QuerySource
        • h3TilesetSource
        • quadbinTableSource
        • quadbinQuerySource
        • quadbinTilesetSource
        • rasterSource
        • boundaryTableSource
        • boundaryQuerySource
      • Layers (@deck.gl/carto)
      • Widgets
        • Data Sources
        • Server-side vs. client-side
        • Models
          • getFormula
          • getCategories
          • getHistogram
          • getRange
          • getScatter
          • getTimeSeries
          • getTable
      • Filters
        • Column filters
        • Spatial filters
      • CARTO APIs Reference
    • Release Notes
    • Examples
    • CARTO for React
      • Guides
        • Getting Started
        • Views
        • Data Sources
        • Layers
        • Widgets
        • Authentication and Authorization
        • Basemaps
        • Look and Feel
        • Query Parameters
        • Code Generator
        • Sample Applications
        • Deployment
        • Upgrade Guide
      • Examples
      • Library Reference
        • Introduction
        • API
        • Auth
        • Basemaps
        • Core
        • Redux
        • UI
        • Widgets
      • Release Notes
  • CARTO Self-Hosted
    • Overview
    • Key concepts
      • Architecture
      • Deployment requirements
    • Quickstarts
      • Single VM deployment (Kots)
      • Orchestrated container deployment (Kots)
      • Advanced Orchestrated container deployment (Helm)
    • Guides
      • Guides (Kots)
        • Configure your own buckets
        • Configure an external in-memory cache
        • Enable Google Basemaps
        • Enable the CARTO Data Warehouse
        • Configure an external proxy
        • Enable BigQuery OAuth connections
        • Configure Single Sign-On (SSO)
        • Use Workload Identity in GCP
        • High availability configuration for CARTO Self-hosted
        • Configure your custom service account
      • Guides (Helm)
        • Configure your own buckets (Helm)
        • Configure an external in-memory cache (Helm)
        • Enable Google Basemaps (Helm)
        • Enable the CARTO Data Warehouse (Helm)
        • Configure an external proxy (Helm)
        • Enable BigQuery OAuth connections (Helm)
        • Configure Single Sign-On (SSO) (Helm)
        • Use Workload Identity in GCP (Helm)
        • Use EKS Pod Identity in AWS (Helm)
        • Enable Redshift imports (Helm)
        • Migrating CARTO Self-hosted installation to an external database (Helm)
        • Advanced customizations (Helm)
        • Configure your custom service account (Helm)
    • Maintenance
      • Maintenance (Kots)
        • Updates
        • Backups
        • Uninstall
        • Rotating keys
        • Monitoring
        • Change the Admin Console password
      • Maintenance (Helm)
        • Monitoring (Helm)
        • Rotating keys (Helm)
        • Uninstall (Helm)
        • Backups (Helm)
        • Updates (Helm)
    • Support
      • Get debug information for Support (Kots)
      • Get debug information for Support (Helm)
    • CARTO Self-hosted Legacy
      • Key concepts
        • Architecture
        • Deployment requirements
      • Quickstarts
        • Single VM deployment (docker-compose)
      • Guides
        • Configure your own buckets
        • Configure an external in-memory cache
        • Enable Google Basemaps
        • Enable the CARTO Data Warehouse
        • Configure an external proxy
        • Enable BigQuery OAuth connections
        • Configure Single Sign-On (SSO)
        • Enable Redshift imports
        • Configure your custom service account
        • Advanced customizations
        • Migrating CARTO Self-Hosted installation to an external database
      • Maintenance
        • Updates
        • Backups
        • Uninstall
        • Rotating keys
        • Monitoring
      • Support
    • Release Notes
  • CARTO Native App for Snowflake Containers
    • Deploying CARTO using Snowflake Container Services
  • Get Help
    • Legal & Compliance
    • Previous libraries and components
    • Migrating your content to the new CARTO platform
Powered by GitBook
On this page
  • Install all necessary libraries
  • Authenticate to CARTO and BigQuery
  • Load data from BigQuery into a dataframe
  • Use Analytics Toolbox functions
  • Write a result in a new table on BigQuery
  • Plot your data in a map

Was this helpful?

Export as PDF
  1. Data and Analysis
  2. CARTO + Python
  3. Working with Data

How to access CARTO's Analytics Toolbox for BigQuery and create visualizations via Python notebooks

PreviousHow to access your Data Observatory subscriptionsNextHow to access CARTO’s Analytics Toolbox for Snowflake and create visualizations via Python notebooks

Last updated 1 year ago

Was this helpful?

This notebook guides the user through the process for connecting to CARTO account and leverage CARTO’s Analytics Toolbox and CARTO’s integration with Pydeck to be able to perform spatial analytics at scale and create map visualizations from Python notebooks. You can find the original notebook .

The outline of this notebooks is as follows:

  • Authentication with BigQuery to access to our data and CARTO’s Analytics Toolbox functions and to be able to use ‘CartoLayer’ in Pydeck

  • Opeartions and anlysis using BigQuery’s SQL Client for Python

  • Map visualizations with CARTO and Pydeck

Install all necessary libraries

Please run the following commands to install pydeck-carto and all other required libraries.

!pip install pydeck-carto geopandas db_dtypes -q
import pydeck as pdk
import pydeck_carto as pdkc
import pandas as pd
import geopandas as gpd
import google.cloud.bigquery as bigquery
from carto_auth import CartoAuth
from google.colab import auth

Authenticate to CARTO and BigQuery

In this step, we use the carto_auth package to authenticate to our CARTO account. We want to be authenticate to our Google account too so we can connect to our projects in Google BigQuery and be able to operate with our data tables using BigQuery’s SQL Client for Python notebooks.

#carto autentication
carto_auth = CartoAuth.from_oauth()
from google.colab import auth
auth.authenticate_user()
print('Authenticated')

After that, we need to set the BigQuery project to future api calls.

bq_client = bigquery.Client(project='bqcartodemos')
dataset_id = 'bqcartodemos.sample_tables'
tables = list(bq_client.list_tables(dataset_id) ) # Make an API request.

print("Tables contained in '{}':".format(dataset_id))
for table in tables:
    print("{}.{}.{}".format(table.project, table.dataset_id, table.table_id))

And we can also show the properties from a table.

# Set table_id to the ID of the table model to fetch.
table_id = 'bqcartodemos.sample_tables.01_listings_la_2021_5_reviews'

# Make an API request.
table = bq_client.get_table(table_id)

# View table properties
print(f"Got table {table_id}.")
print(f"Table schema: {table.schema}")
print(f"Table description: {table.description}")
print(f"Table has {table.num_rows} rows")

Load data from BigQuery into a dataframe

Next, you can also load data available in BigQuery into a geodataframe in Python.

# Load table
table = bq_client.get_table("bqcartodemos.sample_tables.01_listings_la_2021_5_reviews")
gdf = bq_client.list_rows(table).to_geodataframe()
#formating
gdf['review_scores_cleanliness'] = gdf['review_scores_cleanliness'].astype('float')
gdf['review_scores_location'] = gdf['review_scores_location'].astype('float')
gdf['review_scores_value'] = gdf['review_scores_value'].astype('float')
gdf['review_scores_rating'] = gdf['review_scores_rating'].astype('float')
pd.set_option('display.precision', 2)
# Table preview
gdf.head()

Use Analytics Toolbox functions

CARTO’s Analytics Toolbox is a suite of functions and procedures that run natively in SQL within the different supported data warehouse. This means, that the user can run functions from the Analytics Toolbox using the BigQuery SQL Client.

To be able to access the Analytics Toolbox here, you will need to first connect your BigQuery account to CARTO in the Connections section of the CARTO Workspace.

query_string_air = 
f"""
WITH
  h3_airbnb AS (
  SELECT
    `carto-un`.carto.H3_FROMGEOGPOINT(geom,
      8) AS h3,
      *
  FROM
    bqcartodemos.sample_tables.01_listings_la_2021_5_reviews),
  aggregated_h3 AS (
  SELECT
    h3,
    ROUND(AVG(price_num), 2) price,
    ROUND(AVG(review_scores_rating), 2) overall_rating,
    ROUND(AVG(review_scores_value), 2) value_vs_price_rating,
    ROUND(AVG(review_scores_cleanliness), 2) cleanliness_rating,
    ROUND(AVG(review_scores_location), 2) location_rating,
    COUNT(*) AS total_listings
  FROM
    h3_airbnb
  GROUP BY
    h3
	HAVING COUNT(*) > 3)
SELECT
  *
FROM
  aggregated_h3
"""

gdf_air = bq_client.query(query_string_air).result().to_dataframe()
gdf_air['overall_rating'] = gdf_air['overall_rating'].astype('float')
gdf_air['value_vs_price_rating'] = gdf_air['value_vs_price_rating'].astype('float')
gdf_air['cleanliness_rating'] = gdf_air['cleanliness_rating'].astype('float')
gdf_air['location_rating'] = gdf_air['location_rating'].astype('float')
gdf_air.head()

Write a result in a new table on BigQuery

Once you have the desired result, you might want to store it in a new table in your BigQuery account. Let’s see how to do it.

bq_client.load_table_from_dataframe(gdf_air, "sample_tables.listings_from_notebook").result()
query = 
f"""
SELECT *
FROM `bqcartodemos.sample_tables.listings_from_notebook`
"""

gdf_test = bq_client.query(query).result().to_dataframe(create_bqstorage_client=False)
gdf_test.head()

Plot your data in a map

Using pydeck_carto, you can visualize your data in a map when you are working on it, doing analysis and so on as a part of your Data Science Workflow.

# Register CartoLayer in pydeck
pdkc.register_carto_layer()

# Render CartoLayer in pydeck with color_bins style
layer = pdk.Layer(
    "CartoLayer",
    data="SELECT h3, total_listings FROM `bqcartodemos.sample_tables.listings_from_notebook`",
    type_=pdkc.MapType.QUERY,
    connection=pdk.types.String("ds-connection"), #Use the name of your connection in Carto platform
    credentials=pdkc.get_layer_credentials(carto_auth),
    aggregation_exp=pdk.types.String("sum(total_listings) as total_listings"),
    aggregation_res_level=5,
    geo_column=pdk.types.String("h3"),
    get_fill_color=pdkc.styles.color_bins("total_listings",[0, 5, 10, 15, 20, 25], "PinkYl"),
    get_line_color=[0, 0, 0, 100],
    line_width_min_pixels=0.5,
    stroked=True,
    extruded=False,
    pickable=True,
)

tooltip = {
    "html": "Listing: <b>{total_listings}</b>",
    "style": {"background": "grey", "color": "white", "font-family": '"Helvetica Neue", Arial', "z-index": "10000"},
}

view_state = pdk.ViewState(latitude=34.5, longitude=-118, zoom=8)
pdk.Deck(layer, map_style=pdk.map_styles.ROAD, initial_view_state=view_state)

And then, we can already list datasets, data objects, and even read tables by passing the “table id”. In short, we can work with the entire . In this example, we list all tables contained in a specific BigQuery dataset.

here
BigQuery client