LogoLogo
HomeAcademyLoginTry for free
  • Welcome
  • What's new
    • Q2 2025
    • Q1 2025
    • Q4 2024
    • Q3 2024
    • Q2 2024
    • Q1 2024
    • Q4 2023
    • Q3 2023
    • Q2 2023
    • Q1 2023
    • Q4 2022
    • Q3 2022
  • FAQs
    • Accounts
    • Migration to the new platform
    • User & organization setup
    • General
    • Builder
    • Workflows
    • Data Observatory
    • Analytics Toolbox
    • Development Tools
    • Deployment Options
    • CARTO Basemaps
    • CARTO for Education
    • Support Packages
    • Security and Compliance
  • Getting started
    • What is CARTO?
    • Quickstart guides
      • Connecting to your data
      • Creating your first map
      • Creating your first workflow
      • Developing your first application
    • CARTO Academy
  • CARTO User Manual
    • Overview
      • Creating your CARTO organization
      • CARTO Cloud Regions
      • CARTO Workspace overview
    • Maps
      • Data sources
        • Simple features
        • Spatial Indexes
        • Pre-generated tilesets
        • Rasters
        • Defining source spatial data
        • Managing data freshness
        • Changing data source location
      • Layers
        • Point
          • Grid point aggregation
          • H3 point aggregation
          • Heatmap point aggregation
          • Cluster point aggregation
        • Polygon
        • Line
        • Grid
        • H3
        • Raster
        • Zoom to layer
      • Widgets
        • Formula widget
        • Category widget
        • Pie widget
        • Histogram widget
        • Range widget
        • Time Series widget
        • Table widget
      • SQL Parameters
        • Date parameter
        • Text parameter
        • Numeric parameter
        • Publishing SQL parameters
      • Interactions
      • Legend
      • Basemaps
        • Basemap selector
      • AI Agents
      • SQL analyses
      • Map view modes
      • Map description
      • Feature selection tool
      • Search locations
      • Measure distances
      • Exporting data
      • Download PDF reports
      • Managing maps
      • Sharing and collaboration
        • Editor collaboration
        • Map preview for editors
        • Map settings for viewers
        • Comments
        • Embedding maps
        • URL parameters
      • Performance considerations
    • Workflows
      • Workflow canvas
      • Results panel
      • Components
        • Aggregation
        • Custom
        • Data Enrichment
        • Data Preparation
        • Generative AI
        • Input / Output
        • Joins
        • Parsers
        • Raster Operations
        • Spatial Accessors
        • Spatial Analysis
        • Spatial Constructors
        • Spatial Indexes
        • Spatial Operations
        • Statistics
        • Tileset Creation
        • BigQuery ML
        • Snowflake ML
        • Google Earth Engine
        • Google Environment APIs
        • Telco Signal Propagation Models
      • Data Sources
      • Scheduling workflows
      • Sharing workflows
      • Using variables in workflows
      • Executing workflows via API
      • Temporary data in Workflows
      • Extension Packages
      • Managing workflows
      • Workflows best practices
    • Data Explorer
      • Creating a map from your data
      • Importing data
        • Importing rasters
      • Geocoding data
      • Optimizing your data
    • Data Observatory
      • Terminology
      • Browsing the Spatial Data Catalog
      • Subscribing to public and premium datasets
      • Accessing free data samples
      • Managing your subscriptions
      • Accessing your subscriptions from your data warehouse
        • Access data in BigQuery
        • Access data in Snowflake
        • Access data in Databricks
        • Access data in Redshift
        • Access data in PostgreSQL
    • Connections
      • Google BigQuery
      • Snowflake
      • Databricks
      • Amazon Redshift
      • PostgreSQL
      • CARTO Data Warehouse
      • Sharing connections
      • Deleting a connection
      • Required permissions
      • IP whitelisting
      • Customer data responsibilities
    • Applications
    • Settings
      • Understanding your organization quotas
      • Activity Data
        • Activity Data Reference
        • Activity Data Examples
        • Activity Data Changelog
      • Users and Groups
        • Inviting users to your organization
        • Managing user roles
        • Deleting users
        • SSO
        • Groups
        • Mapping groups to user roles
      • CARTO Support Access
      • Customizations
        • Customizing appearance and branding
        • Configuring custom color palettes
        • Configuring your organization basemaps
        • Enabling AI Agents
      • Advanced Settings
        • Managing applications
        • Configuring S3 Bucket for Redshift Imports
        • Configuring OAuth connections to Snowflake
        • Configuring OAuth U2M connections to Databricks
        • Configuring S3 Bucket integration for RDS for PostgreSQL Exports in Builder
        • Configuring Workload Identity Federation for BigQuery
      • Data Observatory
      • Deleting your organization
    • Developers
      • Managing Credentials
        • API Base URL
        • API Access Tokens
        • SPA OAuth Clients
        • M2M OAuth Clients
      • Named Sources
  • Data and Analysis
    • Analytics Toolbox Overview
    • Analytics Toolbox for BigQuery
      • Getting access
        • Projects maintained by CARTO in different BigQuery regions
        • Manual installation in your own project
        • Installation in a Google Cloud VPC
        • Core module
      • Key concepts
        • Tilesets
        • Spatial indexes
      • SQL Reference
        • accessors
        • clustering
        • constructors
        • cpg
        • data
        • http_request
        • import
        • geohash
        • h3
        • lds
        • measurements
        • placekey
        • processing
        • quadbin
        • random
        • raster
        • retail
        • routing
        • s2
        • statistics
        • telco
        • tiler
        • transformations
      • Guides
        • Running queries from Builder
        • Working with Raster data
      • Release notes
      • About Analytics Toolbox regions
    • Analytics Toolbox for Snowflake
      • Getting access
        • Native App from Snowflake's Marketplace
        • Manual installation
      • Key concepts
        • Spatial indexes
        • Tilesets
      • SQL Reference
        • accessors
        • clustering
        • constructors
        • data
        • http_request
        • import
        • h3
        • lds
        • measurements
        • placekey
        • processing
        • quadbin
        • random
        • raster
        • retail
        • s2
        • statistics
        • tiler
        • transformations
      • Guides
        • Running queries from Builder
        • Working with Raster data
      • Release Notes
    • Analytics Toolbox for Databricks
      • Getting access
        • Personal (former Single User) cluster
        • Standard (former Shared) cluster
      • Reference
        • lds
        • tiler
      • Guides
      • Release Notes
    • Analytics Toolbox for Redshift
      • Getting access
        • Manual installation in your database
        • Installation in an Amazon Web Services VPC
        • Core version
      • Key concepts
        • Tilesets
        • Spatial indexes
      • SQL Reference
        • clustering
        • constructors
        • data
        • http_request
        • import
        • lds
        • placekey
        • processing
        • quadbin
        • random
        • s2
        • statistics
        • tiler
        • transformations
      • Guides
        • Running queries from Builder
      • Release Notes
    • Analytics Toolbox for PostgreSQL
      • Getting access
        • Manual installation
        • Core version
      • Key concepts
        • Tilesets
        • Spatial Indexes
      • SQL Reference
        • h3
        • quadbin
        • tiler
      • Guides
        • Creating spatial index tilesets
        • Running queries from Builder
      • Release Notes
    • CARTO + Python
      • Installation
      • Authentication Methods
      • Visualizing Data
      • Working with Data
        • How to work with your data in the CARTO Data Warehouse
        • How to access your Data Observatory subscriptions
        • How to access CARTO's Analytics Toolbox for BigQuery and create visualizations via Python notebooks
        • How to access CARTO’s Analytics Toolbox for Snowflake and create visualizations via Python notebooks
        • How to visualize data from Databricks
      • Reference
    • CARTO QGIS Plugin
  • CARTO for Developers
    • Overview
    • Key concepts
      • Architecture
      • Libraries and APIs
      • Authentication methods
        • API Access Tokens
        • OAuth Access Tokens
        • OAuth Clients
      • Connections
      • Data sources
      • Visualization with deck.gl
        • Basemaps
          • CARTO Basemap
          • Google Maps
            • Examples
              • Gallery
              • Getting Started
              • Basic Examples
                • Hello World
                • BigQuery Tileset Layer
                • Data Observatory Tileset Layer
              • Advanced Examples
                • Arc Layer
                • Extrusion
                • Trips Layer
            • What's New
          • Amazon Location
            • Examples
              • Hello World
              • CartoLayer
            • What's New
        • Rapid Map Prototyping
      • Charts and widgets
      • Filtering and interactivity
      • Summary
    • Quickstart
      • Make your first API call
      • Visualize your first dataset
      • Create your first widget
    • Guides
      • Build a public application
      • Build a private application
      • Build a private application using SSO
      • Visualize massive datasets
      • Integrate CARTO in your existing application
      • Use Boundaries in your application
      • Avoid exposing SQL queries with Named Sources
      • Managing cache in your CARTO applications
    • Reference
      • Deck (@deck.gl reference)
      • Data Sources
        • vectorTableSource
        • vectorQuerySource
        • vectorTilesetSource
        • h3TableSource
        • h3QuerySource
        • h3TilesetSource
        • quadbinTableSource
        • quadbinQuerySource
        • quadbinTilesetSource
        • rasterSource
        • boundaryTableSource
        • boundaryQuerySource
      • Layers (@deck.gl/carto)
      • Widgets
        • Data Sources
        • Server-side vs. client-side
        • Models
          • getFormula
          • getCategories
          • getHistogram
          • getRange
          • getScatter
          • getTimeSeries
          • getTable
      • Filters
        • Column filters
        • Spatial filters
      • CARTO APIs Reference
    • Release Notes
    • Examples
    • CARTO for React
      • Guides
        • Getting Started
        • Views
        • Data Sources
        • Layers
        • Widgets
        • Authentication and Authorization
        • Basemaps
        • Look and Feel
        • Query Parameters
        • Code Generator
        • Sample Applications
        • Deployment
        • Upgrade Guide
      • Examples
      • Library Reference
        • Introduction
        • API
        • Auth
        • Basemaps
        • Core
        • Redux
        • UI
        • Widgets
      • Release Notes
  • CARTO Self-Hosted
    • Overview
    • Key concepts
      • Architecture
      • Deployment requirements
    • Quickstarts
      • Single VM deployment (Kots)
      • Orchestrated container deployment (Kots)
      • Advanced Orchestrated container deployment (Helm)
    • Guides
      • Guides (Kots)
        • Configure your own buckets
        • Configure an external in-memory cache
        • Enable Google Basemaps
        • Enable the CARTO Data Warehouse
        • Configure an external proxy
        • Enable BigQuery OAuth connections
        • Configure Single Sign-On (SSO)
        • Use Workload Identity in GCP
        • High availability configuration for CARTO Self-hosted
        • Configure your custom service account
      • Guides (Helm)
        • Configure your own buckets (Helm)
        • Configure an external in-memory cache (Helm)
        • Enable Google Basemaps (Helm)
        • Enable the CARTO Data Warehouse (Helm)
        • Configure an external proxy (Helm)
        • Enable BigQuery OAuth connections (Helm)
        • Configure Single Sign-On (SSO) (Helm)
        • Use Workload Identity in GCP (Helm)
        • Use EKS Pod Identity in AWS (Helm)
        • Enable Redshift imports (Helm)
        • Migrating CARTO Self-hosted installation to an external database (Helm)
        • Advanced customizations (Helm)
        • Configure your custom service account (Helm)
    • Maintenance
      • Maintenance (Kots)
        • Updates
        • Backups
        • Uninstall
        • Rotating keys
        • Monitoring
        • Change the Admin Console password
      • Maintenance (Helm)
        • Monitoring (Helm)
        • Rotating keys (Helm)
        • Uninstall (Helm)
        • Backups (Helm)
        • Updates (Helm)
    • Support
      • Get debug information for Support (Kots)
      • Get debug information for Support (Helm)
    • CARTO Self-hosted Legacy
      • Key concepts
        • Architecture
        • Deployment requirements
      • Quickstarts
        • Single VM deployment (docker-compose)
      • Guides
        • Configure your own buckets
        • Configure an external in-memory cache
        • Enable Google Basemaps
        • Enable the CARTO Data Warehouse
        • Configure an external proxy
        • Enable BigQuery OAuth connections
        • Configure Single Sign-On (SSO)
        • Enable Redshift imports
        • Configure your custom service account
        • Advanced customizations
        • Migrating CARTO Self-Hosted installation to an external database
      • Maintenance
        • Updates
        • Backups
        • Uninstall
        • Rotating keys
        • Monitoring
      • Support
    • Release Notes
  • CARTO Native App for Snowflake Containers
    • Deploying CARTO using Snowflake Container Services
  • Get Help
    • Legal & Compliance
    • Previous libraries and components
    • Migrating your content to the new CARTO platform
Powered by GitBook
On this page
  • ST_DELAUNAYLINES
  • ST_DELAUNAYLINES
  • ST_POLYGONIZE
  • ST_VORONOILINES
  • ST_VORONOIPOLYGONS

Was this helpful?

Export as PDF
  1. Data and Analysis
  2. Analytics Toolbox for Snowflake
  3. SQL Reference

processing

This module contains functions that computes new geographies by processing existing geographies.

ST_DELAUNAYLINES

ST_DELAUNAYLINES(points)

Description

Calculates the Delaunay triangulation of the points provided. An array of linestrings in GeoJSON format is returned.

  • points: ARRAY array of points in GeoJSON format casted to STRING.

Due to technical limitations of the underlying libraries used, the input points' coordinates are truncated to 5 decimal places in order to avoid problems that happen with close but distinct input points. This limits the precision of the results and can alter slightly the position of the resulting polygons (about 1 meter). This can also result in some points being merged together, so that fewer polygons than expected may result.

warning

The maximum number of points typically used to compute Delaunay diagrams is 300,000. This limit ensures efficient computation while maintaining accuracy in delineating regions based on proximity to specified points.

Return type

ARRAY

Examples

SELECT CARTO.CARTO.ST_DELAUNAYLINES(
  ARRAY_CONSTRUCT(
    ST_ASGEOJSON(ST_POINT(-75.833, 39.284))::STRING,
    ST_ASGEOJSON(ST_POINT(-75.6, 39.984))::STRING,
    ST_ASGEOJSON(ST_POINT(-75.221, 39.125))::STRING,
    ST_ASGEOJSON(ST_POINT(-75.521, 39.325))::STRING
  )
);
--  "{\"coordinates\":[[-75.833,39.284],[-75.221,39.125],[-75.6,39.984],[-75.833,39.284]],\"type\":\"LineString\"}",
--  "{\"coordinates\":[[-75.833,39.284],[-75.521,39.325],[-75.6,39.984],[-75.833,39.284]],\"type\":\"LineString\"}",
--  "{\"coordinates\":[[-75.833,39.284],[-75.521,39.325],[-75.221,39.125],[-75.833,39.284]],\"type\":\"LineString\"}",
--  "{\"coordinates\":[[-75.521,39.325],[-75.221,39.125],[-75.6,39.984],[-75.521,39.325]],\"type\":\"LineString\"}"

Note that if some points are very close together (about 1 meter) they may be merged and the result may have fewer lines than expected, for example these four points result in two lines:

SELECT CARTO.CARTO.ST_DELAUNAYLINES(
  ARRAY_CONSTRUCT(
    '{"coordinates":[4.1829523,43.6347910],"type":"Point"}',
    '{"coordinates":[4.1829967,43.6347137],"type":"Point"}',
    '{"coordinates":[4.1829955,43.6347143],"type":"Point"}',
    '{"coordinates":[4.1829321,43.6347500],"type":"Point"}'
  )
);
-- [
--   "{\"coordinates\":[[4.18293,43.63475],[4.183,43.63471],[4.18295,43.63479],[4.18293,43.63475]],\"type\":\"LineString\"}"
-- ]

ST_DELAUNAYLINES

ST_DELAUNAYLINES(points)

Description

Calculates the Delaunay triangulation of the points provided. An array of polygons in GeoJSON format is returned.

  • points: ARRAY array of points in GeoJSON format casted to STRING.

Due to technical limitations of the underlying libraries used, the input points' coordinates are truncated to 5 decimal places in order to avoid problems that happen with close but distinct input points. This limits the precision of the results and can alter slightly the position of the resulting polygons (about 1 meter). This can also result in some points being merged together, so that fewer polygons than expected may result.

warning

The maximum number of points typically used to compute Delaunay diagrams is 300,000. This limit ensures efficient computation while maintaining accuracy in delineating regions based on proximity to specified points.

Return type

ARRAY

Examples

SELECT CARTO.CARTO.ST_DELAUNAYPOLYGONS(
  ARRAY_CONSTRUCT(
    ST_ASGEOJSON(ST_POINT(-75.833, 39.284))::STRING,
    ST_ASGEOJSON(ST_POINT(-75.6, 39.984))::STRING,
    ST_ASGEOJSON(ST_POINT(-75.221, 39.125))::STRING,
    ST_ASGEOJSON(ST_POINT(-75.521, 39.325))::STRING
  )
);
-- "{\"coordinates\":[[[-75.833,39.284],[-75.221,39.125],[-75.6,39.984],[-75.833,39.284]]],\"type\":\"Polygon\"}",
-- "{\"coordinates\":[[[-75.833,39.284],[-75.521,39.325],[-75.6,39.984],[-75.833,39.284]]],\"type\":\"Polygon\"}",
-- "{\"coordinates\":[[[-75.833,39.284],[-75.521,39.325],[-75.221,39.125],[-75.833,39.284]]],\"type\":\"Polygon\"}",
-- "{\"coordinates\":[[[-75.521,39.325],[-75.221,39.125],[-75.6,39.984],[-75.521,39.325]]],\"type\":\"Polygon\"}"

Note that if some points are very close together (about 1 meter) they may be merged and the result may have fewer triangles than expected, for example these four points result in one triangle:

SELECT CARTO.CARTO.ST_DELAUNAYPOLYGONS(
  ARRAY_CONSTRUCT(
    '{"coordinates":[4.1829523,43.6347910],"type":"Point"}',
    '{"coordinates":[4.1829967,43.6347137],"type":"Point"}',
    '{"coordinates":[4.1829955,43.6347143],"type":"Point"}',
    '{"coordinates":[4.1829321,43.6347500],"type":"Point"}'
  )
);
-- [
--   "{\"coordinates\":[[[4.18293,43.63475],[4.183,43.63471],[4.18295,43.63479],[4.18293,43.63475]]],\"type\":\"Polygon\"}"
-- ]

ST_POLYGONIZE

ST_POLYGONIZE(lines)

Description

Creates a set of polygons from geographies which contain lines that represent the their edges.

  • lines: ARRAY array of lines which represent the polygons edges in GeoJSON format casted to STRING.

Return type

ARRAY

Example

SELECT CARTO.CARTO.ST_POLYGONIZE(
  ARRAY_CONSTRUCT(
    ST_ASGEOJSON(
      ST_GEOGRAPHYFROMWKT(
        'LINESTRING(-74.5366825512491 43.6889777784079, -70.7632814028801 42.9679602005825, -70.2005131676838 43.8455720129728, -74.5366825512491 43.6889777784079)'
      )
    )::STRING,
    ST_ASGEOJSON(
      ST_GEOGRAPHYFROMWKT(
        'LINESTRING(-73.9704330709753 35.3953164724094, -72.514071762468 36.5823995124737, -73.3262122666779 41.2706174323278, -73.9704330709753 35.3953164724094)'
      )
    )::STRING
  )
);
-- "{\"coordinates\":[[[-74.5366825512491,43.6889777784079],[-70.7632814028801,42.9679602005825],[-70.2005131676838,43.8455720129728],[-74.5366825512491,43.6889777784079]]],\"type\":\"Polygon\"}",
-- "{\"coordinates\":[[[-73.9704330709753,35.3953164724094],[-72.514071762468,36.5823995124737],[-73.3262122666779,41.2706174323278],[-73.9704330709753,35.3953164724094]]],\"type\":\"Polygon\"}"

ST_VORONOILINES

ST_VORONOILINES(points [, bbox])

Description

Calculates the Voronoi diagram of the points provided. An array of linestrings in GeoJSON format is returned.

  • points: ARRAY array of points in GeoJSON format casted to STRING.

  • bbox (optional): ARRAY clipping bounding box. By default the [-180,-85,180,85] bbox will be used.

Due to technical limitations of the underlying libraries used, the input points' coordinates are truncated to 5 decimal places in order to avoid problems that happen with close but distinct input points. This limits the precision of the results and can alter slightly the position of the resulting lines (about 1 meter). This can also result in some points being merged together, so that fewer lines than input points may result.

warning

The maximum number of points typically used to compute Voronoi diagrams is 300,000. This limit ensures efficient computation while maintaining accuracy in delineating regions based on proximity to specified points.

Return type

ARRAY

Examples

SELECT CARTO.CARTO.ST_VORONOILINES(
  ARRAY_CONSTRUCT(
    ST_ASGEOJSON(ST_POINT(-75.833, 39.284))::STRING,
    ST_ASGEOJSON(ST_POINT(-75.6, 39.984))::STRING,
    ST_ASGEOJSON(ST_POINT(-75.221, 39.125))::STRING,
    ST_ASGEOJSON(ST_POINT(-75.521, 39.325))::STRING
  )
);
--  "{\"type\":\"LineString\",\"coordinates\":[[-180,74.34550785714367],[-75.72047348298037,39.63532260219203],[-75.6178875502008,38.854668674698786],[-107.79581617647065,-85],[-180,-85],[-180,74.34550785714367]]}",
--  "{\"type\":\"LineString\",\"coordinates\":[[27.59130606860346,85],[-75.04333534909291,39.716496976360624],[-75.72047348298037,39.63532260219203],[-180,74.34550785714367],[-180,85],[27.59130606860346,85]]}",
--  "{\"type\":\"LineString\",\"coordinates\":[[-107.79581617647065,-85],[-75.6178875502008,38.854668674698786],[-75.04333534909291,39.716496976360624],[27.59130606860346,85],[180,85],[180,-85],[-107.79581617647065,-85]]}",
--  "{\"type\":\"LineString\",\"coordinates\":[[-75.72047348298037,39.63532260219203],[-75.04333534909291,39.716496976360624],[-75.6178875502008,38.854668674698786],[-75.72047348298037,39.63532260219203]]}"
SELECT CARTO.CARTO.ST_VORONOILINES(
  ARRAY_CONSTRUCT(
    ST_ASGEOJSON(ST_POINT(-75.833, 39.284))::STRING,
    ST_ASGEOJSON(ST_POINT(-75.6, 39.984))::STRING,
    ST_ASGEOJSON(ST_POINT(-75.221, 39.125))::STRING,
    ST_ASGEOJSON(ST_POINT(-75.521, 39.325))::STRING
  ),
  ARRAY_CONSTRUCT(-76.0, 35.0, -70.0, 45.0)
);
--  "{\"type\":\"LineString\",\"coordinates\":[[-76,39.728365000000004],[-75.72047348298037,39.63532260219203],[-75.6178875502008,38.854668674698786],[-76,37.38389622641511],[-76,39.728365000000004]]}",
--  "{\"type\":\"LineString\",\"coordinates\":[[-70,41.941670547147794],[-75.04333534909291,39.716496976360624],[-75.72047348298037,39.63532260219203],[-76,39.728365000000004],[-76,45],[-70,45],[-70,41.941670547147794]]}",
--  "{\"type\":\"LineString\",\"coordinates\":[[-76,37.38389622641511],[-75.6178875502008,38.854668674698786],[-75.04333534909291,39.716496976360624],[-70,41.941670547147794],[-70,35],[-76,35],[-76,37.38389622641511]]}",
--  "{\"type\":\"LineString\",\"coordinates\":[[-75.72047348298037,39.63532260219203],[-75.04333534909291,39.716496976360624],[-75.6178875502008,38.854668674698786],[-75.72047348298037,39.63532260219203]]}"

Note that if some points are very close together (about 1 meter) they may be merged and the result may have fewer lines than points, for example these three points result in two lines

SELECT CARTO.CARTO.ST_VORONOILINES(
  ARRAY_CONSTRUCT(
    '{"coordinates":[4.1829523,43.6347910],"type":"Point"}',
    '{"coordinates":[4.1829967,43.6347137],"type":"Point"}',
    '{"coordinates":[4.1829955,43.6347143],"type":"Point"}'
  ),
  ARRAY_CONSTRUCT(4.182, 43.634, 4.183, 43.635)
);
-- [
--   "{\"type\":\"LineString\",\"coordinates\":[[4.183,43.634765625],[4.182,43.63414062499997],[4.182,43.635],[4.183,43.635],[4.183,43.634765625]]}",
--   "{\"type\":\"LineString\",\"coordinates\":[[4.182,43.63414062499997],[4.183,43.634765625],[4.183,43.634],[4.182,43.634],[4.182,43.63414062499997]]}"
-- ]

ST_VORONOIPOLYGONS

ST_VORONOIPOLYGONS(points [, bbox])

Description

Calculates the Voronoi diagram of the points provided. An array of polygons in GeoJSON format is returned.

  • points: ARRAY array of points in GeoJSON format casted to STRING.

  • bbox (optional): ARRAY clipping bounding box. By default the [-180,-85,180,85] bbox will be used.

Due to technical limitations of the underlying libraries used, the input points' coordinates are truncated to 5 decimal places in order to avoid problems that happen with close but distinct input points. This limits the precision of the results and can alter slightly the position of the resulting polygons (about 1 meter). This can also result in some points being merged together, so that fewer polygons than input points may result.

warning

The maximum number of points typically used to compute Voronoi diagrams is 300,000. This limit ensures efficient computation while maintaining accuracy in delineating regions based on proximity to specified points.

Return type

ARRAY

Examples

SELECT CARTO.CARTO.ST_VORONOIPOLYGONS(
  ARRAY_CONSTRUCT(
    ST_ASGEOJSON(ST_POINT(-75.833, 39.284))::STRING,
    ST_ASGEOJSON(ST_POINT(-75.6, 39.984))::STRING,
    ST_ASGEOJSON(ST_POINT(-75.221, 39.125))::STRING,
    ST_ASGEOJSON(ST_POINT(-75.521, 39.325))::STRING
  )
);
--  "{\"type\":\"Polygon\",\"coordinates\":[[[-180,74.34550785714367],[-75.72047348298037,39.63532260219203],[-75.6178875502008,38.854668674698786],[-107.79581617647065,-85],[-180,-85],[-180,74.34550785714367]]]}",
--  "{\"type\":\"Polygon\",\"coordinates\":[[[27.59130606860346,85],[-75.04333534909291,39.716496976360624],[-75.72047348298037,39.63532260219203],[-180,74.34550785714367],[-180,85],[27.59130606860346,85]]]}",
--  "{\"type\":\"Polygon\",\"coordinates\":[[[-107.79581617647065,-85],[-75.6178875502008,38.854668674698786],[-75.04333534909291,39.716496976360624],[27.59130606860346,85],[180,85],[180,-85],[-107.79581617647065,-85]]]}",
--  "{\"type\":\"Polygon\",\"coordinates\":[[[-75.72047348298037,39.63532260219203],[-75.04333534909291,39.716496976360624],[-75.6178875502008,38.854668674698786],[-75.72047348298037,39.63532260219203]]]}"
SELECT CARTO.CARTO.ST_VORONOIPOLYGONS(
  ARRAY_CONSTRUCT(
    ST_ASGEOJSON(ST_POINT(-75.833, 39.284))::STRING,
    ST_ASGEOJSON(ST_POINT(-75.6, 39.984))::STRING,
    ST_ASGEOJSON(ST_POINT(-75.221, 39.125))::STRING,
    ST_ASGEOJSON(ST_POINT(-75.521, 39.325))::STRING
  ),
  ARRAY_CONSTRUCT(-76.0, 35.0, -70.0, 45.0)
);
--  "{\"type\":\"Polygon\",\"coordinates\":[[[-76,39.728365000000004],[-75.72047348298037,39.63532260219203],[-75.6178875502008,38.854668674698786],[-76,37.38389622641511],[-76,39.728365000000004]]]}",
--  "{\"type\":\"Polygon\",\"coordinates\":[[[-70,41.941670547147794],[-75.04333534909291,39.716496976360624],[-75.72047348298037,39.63532260219203],[-76,39.728365000000004],[-76,45],[-70,45],[-70,41.941670547147794]]]}",
--  "{\"type\":\"Polygon\",\"coordinates\":[[[-76,37.38389622641511],[-75.6178875502008,38.854668674698786],[-75.04333534909291,39.716496976360624],[-70,41.941670547147794],[-70,35],[-76,35],[-76,37.38389622641511]]]}",
--  "{\"type\":\"Polygon\",\"coordinates\":[[[-75.72047348298037,39.63532260219203],[-75.04333534909291,39.716496976360624],[-75.6178875502008,38.854668674698786],[-75.72047348298037,39.63532260219203]]]}"

Note that if some points are very close together (about 1 meter) they may be merged and the result may have fewer polygons than points, for example these three points result in two polygons:

SELECT CARTO.CARTO.ST_VORONOIPOLYGONS(
  ARRAY_CONSTRUCT(
    '{"coordinates":[4.1829523,43.6347910],"type":"Point"}',
    '{"coordinates":[4.1829967,43.6347137],"type":"Point"}',
    '{"coordinates":[4.1829955,43.6347143],"type":"Point"}'
  ),
  ARRAY_CONSTRUCT(4.182, 43.634, 4.183, 43.635)
);
-- [
--  "{\"type\":\"Polygon\",\"coordinates\":[[[4.183,43.634765625],[4.182,43.63414062499997],[4.182,43.635],[4.183,43.635],[4.183,43.634765625]]]}",
--   "{\"type\":\"Polygon\",\"coordinates\":[[[4.182,43.63414062499997],[4.183,43.634765625],[4.183,43.634],[4.182,43.634],[4.-- 182,43.63414062499997]]]}"
-- ]

Additional examples

PreviousplacekeyNextquadbin

Last updated 10 months ago

Was this helpful?

Analyzing store location coverage using a Voronoi diagram