LogoLogo
HomeAcademyLoginTry for free
  • Welcome
  • What's new
    • Q2 2025
    • Q1 2025
    • Q4 2024
    • Q3 2024
    • Q2 2024
    • Q1 2024
    • Q4 2023
    • Q3 2023
    • Q2 2023
    • Q1 2023
    • Q4 2022
    • Q3 2022
  • FAQs
    • Accounts
    • Migration to the new platform
    • User & organization setup
    • General
    • Builder
    • Workflows
    • Data Observatory
    • Analytics Toolbox
    • Development Tools
    • Deployment Options
    • CARTO Basemaps
    • CARTO for Education
    • Support Packages
    • Security and Compliance
  • Getting started
    • What is CARTO?
    • Quickstart guides
      • Connecting to your data
      • Creating your first map
      • Creating your first workflow
      • Developing your first application
    • CARTO Academy
  • CARTO User Manual
    • Overview
      • Creating your CARTO organization
      • CARTO Cloud Regions
      • CARTO Workspace overview
    • Maps
      • Data sources
        • Simple features
        • Spatial Indexes
        • Pre-generated tilesets
        • Rasters
        • Defining source spatial data
        • Managing data freshness
        • Changing data source location
      • Layers
        • Point
          • Grid point aggregation
          • H3 point aggregation
          • Heatmap point aggregation
          • Cluster point aggregation
        • Polygon
        • Line
        • Grid
        • H3
        • Raster
        • Zoom to layer
      • Widgets
        • Formula widget
        • Category widget
        • Pie widget
        • Histogram widget
        • Range widget
        • Time Series widget
        • Table widget
      • SQL Parameters
        • Date parameter
        • Text parameter
        • Numeric parameter
        • Publishing SQL parameters
      • Interactions
      • Legend
      • Basemaps
        • Basemap selector
      • AI Agents
      • SQL analyses
      • Map view modes
      • Map description
      • Feature selection tool
      • Search locations
      • Measure distances
      • Exporting data
      • Download PDF reports
      • Managing maps
      • Sharing and collaboration
        • Editor collaboration
        • Map preview for editors
        • Map settings for viewers
        • Comments
        • Embedding maps
        • URL parameters
      • Performance considerations
    • Workflows
      • Workflow canvas
      • Results panel
      • Components
        • Aggregation
        • Custom
        • Data Enrichment
        • Data Preparation
        • Generative AI
        • Input / Output
        • Joins
        • Parsers
        • Raster Operations
        • Spatial Accessors
        • Spatial Analysis
        • Spatial Constructors
        • Spatial Indexes
        • Spatial Operations
        • Statistics
        • Tileset Creation
        • BigQuery ML
        • Snowflake ML
        • Google Earth Engine
        • Google Environment APIs
        • Telco Signal Propagation Models
      • Data Sources
      • Scheduling workflows
      • Sharing workflows
      • Using variables in workflows
      • Executing workflows via API
      • Temporary data in Workflows
      • Extension Packages
      • Managing workflows
      • Workflows best practices
    • Data Explorer
      • Creating a map from your data
      • Importing data
        • Importing rasters
      • Geocoding data
      • Optimizing your data
    • Data Observatory
      • Terminology
      • Browsing the Spatial Data Catalog
      • Subscribing to public and premium datasets
      • Accessing free data samples
      • Managing your subscriptions
      • Accessing your subscriptions from your data warehouse
        • Access data in BigQuery
        • Access data in Snowflake
        • Access data in Databricks
        • Access data in Redshift
        • Access data in PostgreSQL
    • Connections
      • Google BigQuery
      • Snowflake
      • Databricks
      • Amazon Redshift
      • PostgreSQL
      • CARTO Data Warehouse
      • Sharing connections
      • Deleting a connection
      • Required permissions
      • IP whitelisting
      • Customer data responsibilities
    • Applications
    • Settings
      • Understanding your organization quotas
      • Activity Data
        • Activity Data Reference
        • Activity Data Examples
        • Activity Data Changelog
      • Users and Groups
        • Inviting users to your organization
        • Managing user roles
        • Deleting users
        • SSO
        • Groups
        • Mapping groups to user roles
      • CARTO Support Access
      • Customizations
        • Customizing appearance and branding
        • Configuring custom color palettes
        • Configuring your organization basemaps
        • Enabling AI Agents
      • Advanced Settings
        • Managing applications
        • Configuring S3 Bucket for Redshift Imports
        • Configuring OAuth connections to Snowflake
        • Configuring OAuth U2M connections to Databricks
        • Configuring S3 Bucket integration for RDS for PostgreSQL Exports in Builder
        • Configuring Workload Identity Federation for BigQuery
      • Data Observatory
      • Deleting your organization
    • Developers
      • Managing Credentials
        • API Base URL
        • API Access Tokens
        • SPA OAuth Clients
        • M2M OAuth Clients
      • Named Sources
  • Data and Analysis
    • Analytics Toolbox Overview
    • Analytics Toolbox for BigQuery
      • Getting access
        • Projects maintained by CARTO in different BigQuery regions
        • Manual installation in your own project
        • Installation in a Google Cloud VPC
        • Core module
      • Key concepts
        • Tilesets
        • Spatial indexes
      • SQL Reference
        • accessors
        • clustering
        • constructors
        • cpg
        • data
        • http_request
        • import
        • geohash
        • h3
        • lds
        • measurements
        • placekey
        • processing
        • quadbin
        • random
        • raster
        • retail
        • routing
        • s2
        • statistics
        • telco
        • tiler
        • transformations
      • Guides
        • Running queries from Builder
        • Working with Raster data
      • Release notes
      • About Analytics Toolbox regions
    • Analytics Toolbox for Snowflake
      • Getting access
        • Native App from Snowflake's Marketplace
        • Manual installation
      • Key concepts
        • Spatial indexes
        • Tilesets
      • SQL Reference
        • accessors
        • clustering
        • constructors
        • data
        • http_request
        • import
        • h3
        • lds
        • measurements
        • placekey
        • processing
        • quadbin
        • random
        • raster
        • retail
        • s2
        • statistics
        • tiler
        • transformations
      • Guides
        • Running queries from Builder
        • Working with Raster data
      • Release Notes
    • Analytics Toolbox for Databricks
      • Getting access
        • Personal (former Single User) cluster
        • Standard (former Shared) cluster
      • Reference
        • lds
        • tiler
      • Guides
      • Release Notes
    • Analytics Toolbox for Redshift
      • Getting access
        • Manual installation in your database
        • Installation in an Amazon Web Services VPC
        • Core version
      • Key concepts
        • Tilesets
        • Spatial indexes
      • SQL Reference
        • clustering
        • constructors
        • data
        • http_request
        • import
        • lds
        • placekey
        • processing
        • quadbin
        • random
        • s2
        • statistics
        • tiler
        • transformations
      • Guides
        • Running queries from Builder
      • Release Notes
    • Analytics Toolbox for PostgreSQL
      • Getting access
        • Manual installation
        • Core version
      • Key concepts
        • Tilesets
        • Spatial Indexes
      • SQL Reference
        • h3
        • quadbin
        • tiler
      • Guides
        • Creating spatial index tilesets
        • Running queries from Builder
      • Release Notes
    • CARTO + Python
      • Installation
      • Authentication Methods
      • Visualizing Data
      • Working with Data
        • How to work with your data in the CARTO Data Warehouse
        • How to access your Data Observatory subscriptions
        • How to access CARTO's Analytics Toolbox for BigQuery and create visualizations via Python notebooks
        • How to access CARTO’s Analytics Toolbox for Snowflake and create visualizations via Python notebooks
        • How to visualize data from Databricks
      • Reference
    • CARTO QGIS Plugin
  • CARTO for Developers
    • Overview
    • Key concepts
      • Architecture
      • Libraries and APIs
      • Authentication methods
        • API Access Tokens
        • OAuth Access Tokens
        • OAuth Clients
      • Connections
      • Data sources
      • Visualization with deck.gl
        • Basemaps
          • CARTO Basemap
          • Google Maps
            • Examples
              • Gallery
              • Getting Started
              • Basic Examples
                • Hello World
                • BigQuery Tileset Layer
                • Data Observatory Tileset Layer
              • Advanced Examples
                • Arc Layer
                • Extrusion
                • Trips Layer
            • What's New
          • Amazon Location
            • Examples
              • Hello World
              • CartoLayer
            • What's New
        • Rapid Map Prototyping
      • Charts and widgets
      • Filtering and interactivity
      • Summary
    • Quickstart
      • Make your first API call
      • Visualize your first dataset
      • Create your first widget
    • Guides
      • Build a public application
      • Build a private application
      • Build a private application using SSO
      • Visualize massive datasets
      • Integrate CARTO in your existing application
      • Use Boundaries in your application
      • Avoid exposing SQL queries with Named Sources
      • Managing cache in your CARTO applications
    • Reference
      • Deck (@deck.gl reference)
      • Data Sources
        • vectorTableSource
        • vectorQuerySource
        • vectorTilesetSource
        • h3TableSource
        • h3QuerySource
        • h3TilesetSource
        • quadbinTableSource
        • quadbinQuerySource
        • quadbinTilesetSource
        • rasterSource
        • boundaryTableSource
        • boundaryQuerySource
      • Layers (@deck.gl/carto)
      • Widgets
        • Data Sources
        • Server-side vs. client-side
        • Models
          • getFormula
          • getCategories
          • getHistogram
          • getRange
          • getScatter
          • getTimeSeries
          • getTable
      • Filters
        • Column filters
        • Spatial filters
      • CARTO APIs Reference
    • Release Notes
    • Examples
    • CARTO for React
      • Guides
        • Getting Started
        • Views
        • Data Sources
        • Layers
        • Widgets
        • Authentication and Authorization
        • Basemaps
        • Look and Feel
        • Query Parameters
        • Code Generator
        • Sample Applications
        • Deployment
        • Upgrade Guide
      • Examples
      • Library Reference
        • Introduction
        • API
        • Auth
        • Basemaps
        • Core
        • Redux
        • UI
        • Widgets
      • Release Notes
  • CARTO Self-Hosted
    • Overview
    • Key concepts
      • Architecture
      • Deployment requirements
    • Quickstarts
      • Single VM deployment (Kots)
      • Orchestrated container deployment (Kots)
      • Advanced Orchestrated container deployment (Helm)
    • Guides
      • Guides (Kots)
        • Configure your own buckets
        • Configure an external in-memory cache
        • Enable Google Basemaps
        • Enable the CARTO Data Warehouse
        • Configure an external proxy
        • Enable BigQuery OAuth connections
        • Configure Single Sign-On (SSO)
        • Use Workload Identity in GCP
        • High availability configuration for CARTO Self-hosted
        • Configure your custom service account
      • Guides (Helm)
        • Configure your own buckets (Helm)
        • Configure an external in-memory cache (Helm)
        • Enable Google Basemaps (Helm)
        • Enable the CARTO Data Warehouse (Helm)
        • Configure an external proxy (Helm)
        • Enable BigQuery OAuth connections (Helm)
        • Configure Single Sign-On (SSO) (Helm)
        • Use Workload Identity in GCP (Helm)
        • Use EKS Pod Identity in AWS (Helm)
        • Enable Redshift imports (Helm)
        • Migrating CARTO Self-hosted installation to an external database (Helm)
        • Advanced customizations (Helm)
        • Configure your custom service account (Helm)
    • Maintenance
      • Maintenance (Kots)
        • Updates
        • Backups
        • Uninstall
        • Rotating keys
        • Monitoring
        • Change the Admin Console password
      • Maintenance (Helm)
        • Monitoring (Helm)
        • Rotating keys (Helm)
        • Uninstall (Helm)
        • Backups (Helm)
        • Updates (Helm)
    • Support
      • Get debug information for Support (Kots)
      • Get debug information for Support (Helm)
    • CARTO Self-hosted Legacy
      • Key concepts
        • Architecture
        • Deployment requirements
      • Quickstarts
        • Single VM deployment (docker-compose)
      • Guides
        • Configure your own buckets
        • Configure an external in-memory cache
        • Enable Google Basemaps
        • Enable the CARTO Data Warehouse
        • Configure an external proxy
        • Enable BigQuery OAuth connections
        • Configure Single Sign-On (SSO)
        • Enable Redshift imports
        • Configure your custom service account
        • Advanced customizations
        • Migrating CARTO Self-Hosted installation to an external database
      • Maintenance
        • Updates
        • Backups
        • Uninstall
        • Rotating keys
        • Monitoring
      • Support
    • Release Notes
  • CARTO Native App for Snowflake Containers
    • Deploying CARTO using Snowflake Container Services
  • Get Help
    • Legal & Compliance
    • Previous libraries and components
    • Migrating your content to the new CARTO platform
Powered by GitBook
On this page
  • Creating a workflow and loading your data
  • Filtering data to select the relevant stores
  • Creating walk-time isolines around the stores
  • Leveraging the H3 spatial index to enrich geospatial data
  • Adding annotations to your workflow
  • Sharing and further exploring the results of your workflow
  • What next?

Was this helpful?

Export as PDF
  1. Getting started
  2. Quickstart guides

Creating your first workflow

PreviousCreating your first mapNextDeveloping your first application

Last updated 11 months ago

Was this helpful?

is a visual model builder that allows you to build complex spatial analyses and data preparation and transformation workflows without writing code. As with the rest of our platform, Workflows is fully cloud-native and runs in your own data warehouse leveraging its full scalability.

In order to learn more about the main sections of CARTO Workflows' interface and its available components, please check of our documentation.

In this first example we will create drive-time isolines for selected retail locations and we will then enrich them with population data leveraging the power of the H3 spatial index. This tutorial includes some examples of simple data manipulation, including filtering, ordering and limiting datasets, plus some more advanced concepts such as polyfiling areas with H3 cells and joining data using a spatial index in common.

As input data we will leverage a point-based dataset representing retail location that is available in the demo data accessible from the CARTO Data Warehouse connection (i.e. retail_stores), and a table with data from CARTO's Spatial Feature dataset in the USA aggregated at H3 Resolution 8 (i.e. derived_spatialfeatures_usa_h3res8_v1_yearly_v2).

Let's get to it!

Creating a workflow and loading your data

  1. In your CARTO Workspace under the Workflows tab, create a new workflow.

  1. Select the data warehouse where you have the table with the point data accessible. We'll be using the CARTO Data Warehouse, which should be available to all users.

  2. Navigate the data sources panel to locate your table, and drag it onto the canvas. In this example we will be using the retail_stores table available in demo data. You should be able to preview the data both in tabular and map format.

Filtering data to select the relevant stores

In this example, we want to select the 100 stores with the highest revenue, our top performing locations.

  1. First, we want to eliminate irrelevant store types. Drag the Select Distinct component from the Data Preparation toolbox onto the canvas. Connect the stores source to the input side of this component (the left side) and change the column type to storetype.

  2. Click run.

  1. Once run, click on the Select Distinct component and switch to the data preview at the bottom of the window. You will see a list of all distinct store type values. In this example, let’s say we’re only interested in supermarkets.

  2. To select supermarkets, add a Simple Filter component from the Data Preparation toolbox.

  3. Connect the retail stores to the filter, and specify the column as storetype, the operator as equal to, and the value as Supermarket (it's case sensitive).

  4. Run!

This leaves us with 10,202 stores. The next step is to select the top 100 stores in terms of revenue.

  1. Add an Order By component from the Data Preparation toolbox and connect it to the top output from Simple Filter. Note that the top output is all features which match the filter, and the bottom is all of those which don't.

  2. Change the column to revenue and the order to descending.

  1. Next add a Limit component - again from Data Preparation - and change the limit to 100, connecting this to the output of Order By.

  2. Click run, to select only the top 100 stores in terms of generated revenue.

Creating walk-time isolines around the stores

  1. Next, add a Create Isolines component from the Spatial Constructors toolbox. Join the output of Limit to this.

  2. Change the mode to walk, the range type to time and range limit to 600 (10 minutes).

  1. Click run to create 10-minute drive-time isolines. Note this is quite an intensive process compared to many other functions in Workflows (it's calling to an external location data services provider), and so may take a little longer to run.

Leveraging the H3 spatial index to enrich geospatial data

  1. We now add a second input table to the canvas, we will drag and drop the table derived_spatialfeatures_usa_h3res8_v1_yearly_v2 from demo_tables. This table include different spatial features (e.g. population, POIs, climatology, urbanity level, etc.) aggregated at H3 grid with resolution 8.

  1. In order to be able to join the population data with the areas around each retail store, we will use the component H3 Polyfill in order to compute the H3 grid cells in resolution 8 that cover each of the isolines around the stores. We configure the node by selecting the Geo column "geom", configuring the Resolution value to 8 and enabling the option to Keep input table columns.

  1. Next step is to join both tables based on their H3 indices. For that, we will use the Join component. We select the columns named h3 present in both tables to perform the join operation.

  1. Check in the results tab that now you have joined data coming from the retail_stores table with data from CARTO's spatial features dataset.

  1. As we now have multiple H3 grid cells for each retail store, what we want to do is to aggregate the population associated with the area around each store (the H3 polyfilled isoline). In order to do that we are going to use the Group By component, and we are going to aggregate the population_joined column with a SUM as the aggregation operation and we are going to group by the table by the store_id column.

  1. Now, check that in the results what we have again is one row per retail store (i.e. 100 rows) and in each of them we have the store_id and the result of the sum of the population_joined values for the different H3 cells that were associated with the isoline around each store.

  1. We are going to re-join with a Join component the data about the retail_stores (including the point geometry) with the aggregated population we have now. We take the output of the previous Limit component and we add it to a new Join component together with the data we generated in the previous step. We will use the column store_id to join both tables.

Adding annotations to your workflow

In order to add an annotation to your canvas you only need to click on the corresponding icon on the top toolbar and select the location of the canvas where you want to add it.

Sharing and further exploring the results of your workflow

  1. Finally we use the Save as table component to save the results as a new table in our data warehouse. We can then use the "Create map" option to build an interactive map to explore this data further.

What next?

A cool feature in CARTO Workflows is the possibility to add in any area of the canvas, supporting the (allowing for different levels of headers, text formats, images, etc.). This allows users to better explain the different steps performed in a workflow so other users can understand them.

There are multiple ways to share the results of your workflows, from to to your colleagues. Additionally, note that from any step of your workflow (including that with the final saved table), you can create a map in in order to build an interactive dashboard with the result of your workflow plus any of your other spatial data sources.

Check our to keep learning how to get the most of this tool for your data transformation and analysis pipelines. The examples showcase a wide range of scenarios and applications: from simple building blocks for your geospatial analysis to more complex, industry-specific workflows tailored to facilitate running specific geospatial use-cases.

annotations
Markdown syntax
saving the results in a table
sending them via e-mail
CARTO Builder
gallery of workflow examples
CARTO Workflows
this section