LogoLogo
HomeAcademyLoginTry for free
  • Welcome
  • What's new
    • Q2 2025
    • Q1 2025
    • Q4 2024
    • Q3 2024
    • Q2 2024
    • Q1 2024
    • Q4 2023
    • Q3 2023
    • Q2 2023
    • Q1 2023
    • Q4 2022
    • Q3 2022
  • FAQs
    • Accounts
    • Migration to the new platform
    • User & organization setup
    • General
    • Builder
    • Workflows
    • Data Observatory
    • Analytics Toolbox
    • Development Tools
    • Deployment Options
    • CARTO Basemaps
    • CARTO for Education
    • Support Packages
    • Security and Compliance
  • Getting started
    • What is CARTO?
    • Quickstart guides
      • Connecting to your data
      • Creating your first map
      • Creating your first workflow
      • Developing your first application
    • CARTO Academy
  • CARTO User Manual
    • Overview
      • Creating your CARTO organization
      • CARTO Cloud Regions
      • CARTO Workspace overview
    • Maps
      • Data sources
        • Simple features
        • Spatial Indexes
        • Pre-generated tilesets
        • Rasters
        • Defining source spatial data
        • Managing data freshness
        • Changing data source location
      • Layers
        • Point
          • Grid point aggregation
          • H3 point aggregation
          • Heatmap point aggregation
          • Cluster point aggregation
        • Polygon
        • Line
        • Grid
        • H3
        • Raster
        • Zoom to layer
      • Widgets
        • Formula widget
        • Category widget
        • Pie widget
        • Histogram widget
        • Range widget
        • Time Series widget
        • Table widget
      • SQL Parameters
        • Date parameter
        • Text parameter
        • Numeric parameter
        • Publishing SQL parameters
      • Interactions
      • Legend
      • Basemaps
        • Basemap selector
      • AI Agents
      • SQL analyses
      • Map view modes
      • Map description
      • Feature selection tool
      • Search locations
      • Measure distances
      • Exporting data
      • Download PDF reports
      • Managing maps
      • Sharing and collaboration
        • Editor collaboration
        • Map preview for editors
        • Map settings for viewers
        • Comments
        • Embedding maps
        • URL parameters
      • Performance considerations
    • Workflows
      • Workflow canvas
      • Results panel
      • Components
        • Aggregation
        • Custom
        • Data Enrichment
        • Data Preparation
        • Generative AI
        • Input / Output
        • Joins
        • Parsers
        • Raster Operations
        • Spatial Accessors
        • Spatial Analysis
        • Spatial Constructors
        • Spatial Indexes
        • Spatial Operations
        • Statistics
        • Tileset Creation
        • BigQuery ML
        • Snowflake ML
        • Google Earth Engine
        • Google Environment APIs
        • Telco Signal Propagation Models
      • Data Sources
      • Scheduling workflows
      • Sharing workflows
      • Using variables in workflows
      • Executing workflows via API
      • Temporary data in Workflows
      • Extension Packages
      • Managing workflows
      • Workflows best practices
    • Data Explorer
      • Creating a map from your data
      • Importing data
        • Importing rasters
      • Geocoding data
      • Optimizing your data
    • Data Observatory
      • Terminology
      • Browsing the Spatial Data Catalog
      • Subscribing to public and premium datasets
      • Accessing free data samples
      • Managing your subscriptions
      • Accessing your subscriptions from your data warehouse
        • Access data in BigQuery
        • Access data in Snowflake
        • Access data in Databricks
        • Access data in Redshift
        • Access data in PostgreSQL
    • Connections
      • Google BigQuery
      • Snowflake
      • Databricks
      • Amazon Redshift
      • PostgreSQL
      • CARTO Data Warehouse
      • Sharing connections
      • Deleting a connection
      • Required permissions
      • IP whitelisting
      • Customer data responsibilities
    • Applications
    • Settings
      • Understanding your organization quotas
      • Activity Data
        • Activity Data Reference
        • Activity Data Examples
        • Activity Data Changelog
      • Users and Groups
        • Inviting users to your organization
        • Managing user roles
        • Deleting users
        • SSO
        • Groups
        • Mapping groups to user roles
      • CARTO Support Access
      • Customizations
        • Customizing appearance and branding
        • Configuring custom color palettes
        • Configuring your organization basemaps
        • Enabling AI Agents
      • Advanced Settings
        • Managing applications
        • Configuring S3 Bucket for Redshift Imports
        • Configuring OAuth connections to Snowflake
        • Configuring OAuth U2M connections to Databricks
        • Configuring S3 Bucket integration for RDS for PostgreSQL Exports in Builder
        • Configuring Workload Identity Federation for BigQuery
      • Data Observatory
      • Deleting your organization
    • Developers
      • Managing Credentials
        • API Base URL
        • API Access Tokens
        • SPA OAuth Clients
        • M2M OAuth Clients
      • Named Sources
  • Data and Analysis
    • Analytics Toolbox Overview
    • Analytics Toolbox for BigQuery
      • Getting access
        • Projects maintained by CARTO in different BigQuery regions
        • Manual installation in your own project
        • Installation in a Google Cloud VPC
        • Core module
      • Key concepts
        • Tilesets
        • Spatial indexes
      • SQL Reference
        • accessors
        • clustering
        • constructors
        • cpg
        • data
        • http_request
        • import
        • geohash
        • h3
        • lds
        • measurements
        • placekey
        • processing
        • quadbin
        • random
        • raster
        • retail
        • routing
        • s2
        • statistics
        • telco
        • tiler
        • transformations
      • Guides
        • Running queries from Builder
        • Working with Raster data
      • Release notes
      • About Analytics Toolbox regions
    • Analytics Toolbox for Snowflake
      • Getting access
        • Native App from Snowflake's Marketplace
        • Manual installation
      • Key concepts
        • Spatial indexes
        • Tilesets
      • SQL Reference
        • accessors
        • clustering
        • constructors
        • data
        • http_request
        • import
        • h3
        • lds
        • measurements
        • placekey
        • processing
        • quadbin
        • random
        • raster
        • retail
        • s2
        • statistics
        • tiler
        • transformations
      • Guides
        • Running queries from Builder
        • Working with Raster data
      • Release Notes
    • Analytics Toolbox for Databricks
      • Getting access
        • Personal (former Single User) cluster
        • Standard (former Shared) cluster
      • Reference
        • lds
        • tiler
      • Guides
      • Release Notes
    • Analytics Toolbox for Redshift
      • Getting access
        • Manual installation in your database
        • Installation in an Amazon Web Services VPC
        • Core version
      • Key concepts
        • Tilesets
        • Spatial indexes
      • SQL Reference
        • clustering
        • constructors
        • data
        • http_request
        • import
        • lds
        • placekey
        • processing
        • quadbin
        • random
        • s2
        • statistics
        • tiler
        • transformations
      • Guides
        • Running queries from Builder
      • Release Notes
    • Analytics Toolbox for PostgreSQL
      • Getting access
        • Manual installation
        • Core version
      • Key concepts
        • Tilesets
        • Spatial Indexes
      • SQL Reference
        • h3
        • quadbin
        • tiler
      • Guides
        • Creating spatial index tilesets
        • Running queries from Builder
      • Release Notes
    • CARTO + Python
      • Installation
      • Authentication Methods
      • Visualizing Data
      • Working with Data
        • How to work with your data in the CARTO Data Warehouse
        • How to access your Data Observatory subscriptions
        • How to access CARTO's Analytics Toolbox for BigQuery and create visualizations via Python notebooks
        • How to access CARTO’s Analytics Toolbox for Snowflake and create visualizations via Python notebooks
        • How to visualize data from Databricks
      • Reference
    • CARTO QGIS Plugin
  • CARTO for Developers
    • Overview
    • Key concepts
      • Architecture
      • Libraries and APIs
      • Authentication methods
        • API Access Tokens
        • OAuth Access Tokens
        • OAuth Clients
      • Connections
      • Data sources
      • Visualization with deck.gl
        • Basemaps
          • CARTO Basemap
          • Google Maps
            • Examples
              • Gallery
              • Getting Started
              • Basic Examples
                • Hello World
                • BigQuery Tileset Layer
                • Data Observatory Tileset Layer
              • Advanced Examples
                • Arc Layer
                • Extrusion
                • Trips Layer
            • What's New
          • Amazon Location
            • Examples
              • Hello World
              • CartoLayer
            • What's New
        • Rapid Map Prototyping
      • Charts and widgets
      • Filtering and interactivity
      • Summary
    • Quickstart
      • Make your first API call
      • Visualize your first dataset
      • Create your first widget
    • Guides
      • Build a public application
      • Build a private application
      • Build a private application using SSO
      • Visualize massive datasets
      • Integrate CARTO in your existing application
      • Use Boundaries in your application
      • Avoid exposing SQL queries with Named Sources
      • Managing cache in your CARTO applications
    • Reference
      • Deck (@deck.gl reference)
      • Data Sources
        • vectorTableSource
        • vectorQuerySource
        • vectorTilesetSource
        • h3TableSource
        • h3QuerySource
        • h3TilesetSource
        • quadbinTableSource
        • quadbinQuerySource
        • quadbinTilesetSource
        • rasterSource
        • boundaryTableSource
        • boundaryQuerySource
      • Layers (@deck.gl/carto)
      • Widgets
        • Data Sources
        • Server-side vs. client-side
        • Models
          • getFormula
          • getCategories
          • getHistogram
          • getRange
          • getScatter
          • getTimeSeries
          • getTable
      • Filters
        • Column filters
        • Spatial filters
      • CARTO APIs Reference
    • Release Notes
    • Examples
    • CARTO for React
      • Guides
        • Getting Started
        • Views
        • Data Sources
        • Layers
        • Widgets
        • Authentication and Authorization
        • Basemaps
        • Look and Feel
        • Query Parameters
        • Code Generator
        • Sample Applications
        • Deployment
        • Upgrade Guide
      • Examples
      • Library Reference
        • Introduction
        • API
        • Auth
        • Basemaps
        • Core
        • Redux
        • UI
        • Widgets
      • Release Notes
  • CARTO Self-Hosted
    • Overview
    • Key concepts
      • Architecture
      • Deployment requirements
    • Quickstarts
      • Single VM deployment (Kots)
      • Orchestrated container deployment (Kots)
      • Advanced Orchestrated container deployment (Helm)
    • Guides
      • Guides (Kots)
        • Configure your own buckets
        • Configure an external in-memory cache
        • Enable Google Basemaps
        • Enable the CARTO Data Warehouse
        • Configure an external proxy
        • Enable BigQuery OAuth connections
        • Configure Single Sign-On (SSO)
        • Use Workload Identity in GCP
        • High availability configuration for CARTO Self-hosted
        • Configure your custom service account
      • Guides (Helm)
        • Configure your own buckets (Helm)
        • Configure an external in-memory cache (Helm)
        • Enable Google Basemaps (Helm)
        • Enable the CARTO Data Warehouse (Helm)
        • Configure an external proxy (Helm)
        • Enable BigQuery OAuth connections (Helm)
        • Configure Single Sign-On (SSO) (Helm)
        • Use Workload Identity in GCP (Helm)
        • Use EKS Pod Identity in AWS (Helm)
        • Enable Redshift imports (Helm)
        • Migrating CARTO Self-hosted installation to an external database (Helm)
        • Advanced customizations (Helm)
        • Configure your custom service account (Helm)
    • Maintenance
      • Maintenance (Kots)
        • Updates
        • Backups
        • Uninstall
        • Rotating keys
        • Monitoring
        • Change the Admin Console password
      • Maintenance (Helm)
        • Monitoring (Helm)
        • Rotating keys (Helm)
        • Uninstall (Helm)
        • Backups (Helm)
        • Updates (Helm)
    • Support
      • Get debug information for Support (Kots)
      • Get debug information for Support (Helm)
    • CARTO Self-hosted Legacy
      • Key concepts
        • Architecture
        • Deployment requirements
      • Quickstarts
        • Single VM deployment (docker-compose)
      • Guides
        • Configure your own buckets
        • Configure an external in-memory cache
        • Enable Google Basemaps
        • Enable the CARTO Data Warehouse
        • Configure an external proxy
        • Enable BigQuery OAuth connections
        • Configure Single Sign-On (SSO)
        • Enable Redshift imports
        • Configure your custom service account
        • Advanced customizations
        • Migrating CARTO Self-Hosted installation to an external database
      • Maintenance
        • Updates
        • Backups
        • Uninstall
        • Rotating keys
        • Monitoring
      • Support
    • Release Notes
  • CARTO Native App for Snowflake Containers
    • Deploying CARTO using Snowflake Container Services
  • Get Help
    • Legal & Compliance
    • Previous libraries and components
    • Migrating your content to the new CARTO platform
Powered by GitBook
On this page
  • Install all necessary libraries
  • Authenticate to CARTO
  • Loading data from the CARTO Data Warehouse into a dataframe
  • Using functions from the Analytics Toolbox
  • Uploading the result of our analysis as a new table in our data warehouse
  • Visualize your data in a map

Was this helpful?

Export as PDF
  1. Data and Analysis
  2. CARTO + Python
  3. Working with Data

How to work with your data in the CARTO Data Warehouse

PreviousWorking with DataNextHow to access your Data Observatory subscriptions

Last updated 1 year ago

Was this helpful?

This notebook guides the user through the process for connecting to the CARTO account and leverage CARTO’s Analytics Toolbox and CARTO’s integration with Pydeck to be able to perform spatial analytics at scale and create map visualizations from Python notebooks. You can find the original notebook .

The outline of this notebooks is as follows:

  • Authenticating with your CARTO account: to get access to the objects within the CARTO Data Warehouse, to run analysis functions from CARTO’s , and to be able to use ‘CartoLayer’ in Pydeck for visualizing your data

  • Running data opeartions and anlyses using the Python client for the CARTO Data Warehouse

  • Creating map visualizations with CARTO and Pydeck

Install all necessary libraries

Please run the following commands to install the CARTO’s Python packages (pydeck-carto and carto-auth) and all other required libraries.

Note that in order to install the Python client to access the CARTO Data Warehouse you need to identify the extra parameter [carto-dw] when installing the carto-auth package. Note that this client is a wrapper to the .

!pip install pydeck-carto carto-auth[carto-dw] geopandas db_dtypes -q
import pydeck as pdk
import pydeck_carto as pdkc
import pandas as pd
import geopandas as gpd
from carto_auth import CartoAuto

Authenticate to CARTO

In this step, we use the carto_auth package to authenticate to our CARTO account and to get the necessary details to interact with data available in the CARTO Data Warehouse.

# Using the Oauth autentication method
carto_auth = CartoAuth.from_oauth()
# CARTO Data Warehouse client
carto_dw_client = carto_auth.get_carto_dw_client()
#to take the dataset_id in CARTO DW
datasets = list(carto_dw_client.list_datasets())

if datasets:
    print("Datasets in CARTO Data Warehouse:")
    for dataset in datasets:
        print("\t{}".format(dataset.dataset_id))
else:
    print("CARTO Data Warehouse project does not contain any datasets.")

We can already list datasets, data objects, and even read tables by passing the “table id”. In this example we show how to get the properties from a table.

We can also list all tables contained in the “shared” dataset of the CARTO Data Warehouse.

#to list the tables contained in the dataset_id previously obtained
dataset_id = 'shared'
tables = carto_dw_client.list_tables('shared')  # Make an API request.

print("Tables contained in '{}':".format(dataset_id))
for table in tables:
    print("{}.{}.{}".format(table.project, table.dataset_id, table.table_id))

Loading data from the CARTO Data Warehouse into a dataframe

Next, you can also load data available in the CARTO Data Warehouse into a geodataframe in Python.

# Load table
table = carto_dw_client.get_table("carto-dw-ac-jfjjof5m.shared.01_listings_la_2021_5_reviews")
gdf = carto_dw_client.list_rows(table).to_geodataframe()
#formating
gdf['review_scores_cleanliness'] = gdf['review_scores_cleanliness'].astype('float')
gdf['review_scores_location'] = gdf['review_scores_location'].astype('float')
gdf['review_scores_value'] = gdf['review_scores_value'].astype('float')
gdf['review_scores_rating'] = gdf['review_scores_rating'].astype('float')
pd.set_option('display.precision', 2)
# Table preview
gdf.head()

Using functions from the Analytics Toolbox

query_string_air = 
f"""
WITH
  h3_airbnb AS (
  SELECT
    `carto-un`.carto.H3_FROMGEOGPOINT(geom,
      8) AS h3,
      *
  FROM
    shared.01_listings_la_2021_5_reviews),
  aggregated_h3 AS (
  SELECT
    h3,
    ROUND(AVG(price_num), 2) price,
    ROUND(AVG(review_scores_rating), 2) overall_rating,
    ROUND(AVG(review_scores_value), 2) value_vs_price_rating,
    ROUND(AVG(review_scores_cleanliness), 2) cleanliness_rating,
    ROUND(AVG(review_scores_location), 2) location_rating,
    COUNT(*) AS total_listings
  FROM
    h3_airbnb
  GROUP BY
    h3
	HAVING COUNT(*) > 3)
SELECT
  *
FROM
  aggregated_h3
"""

gdf_air = carto_dw_client.query(query_string_air).result().to_dataframe(create_bqstorage_client=False)
gdf_air['overall_rating'] = gdf_air['overall_rating'].astype('float')
gdf_air['value_vs_price_rating'] = gdf_air['value_vs_price_rating'].astype('float')
gdf_air['cleanliness_rating'] = gdf_air['cleanliness_rating'].astype('float')
gdf_air['location_rating'] = gdf_air['location_rating'].astype('float')
gdf_air.head()

Uploading the result of our analysis as a new table in our data warehouse

Once you have the desired result, you might want to store it as a new table in your CARTO Data Warehouse.

carto_dw_client.load_table_from_dataframe(gdf_air, "carto-dw-ac-jfjjof5m.shared.listings_from_notebook").result()
query = 
f"""
SELECT *
FROM `carto-dw-ac-jfjjof5m.shared.listings_from_notebook`
"""

gdf_test = carto_dw_client.query(query).result().to_dataframe(create_bqstorage_client=False)
gdf_test.head()

Visualize your data in a map

Using pydeck-carto, you can visualize your spatial data in a map at any step of your data science workflow, natively from your data warehouse.

# Register CartoLayer in pydeck
pdkc.register_carto_layer()

# Render CartoLayer in pydeck with color_bins style
layer = pdk.Layer(
    "CartoLayer",
    data="SELECT h3, total_listings FROM `shared.listings_from_notebook`",
    type_=pdkc.MapType.QUERY,
    connection=CartoConnection.CARTO_DW,
    credentials=pdkc.get_layer_credentials(carto_auth),
    aggregation_exp=pdk.types.String("sum(total_listings) as total_listings"),
    aggregation_res_level=5,
    geo_column=pdk.types.String("h3"),
    get_fill_color=pdkc.styles.color_bins("total_listings",[0, 5, 10, 15, 20, 25], "PinkYl"),
    get_line_color=[0, 0, 0, 100],
    line_width_min_pixels=0.5,
    stroked=True,
    extruded=False,
    pickable=True
)

tooltip = {
    "html": "Listing: <b>{total_listings}</b>",
    "style": {"background": "grey", "color": "white", "font-family": '"Helvetica Neue", Arial', "z-index": "10000"},
}

view_state = pdk.ViewState(latitude=34.5, longitude=-118, zoom=8)
pdk.Deck(layer, map_style=pdk.map_styles.ROAD, initial_view_state=view_state)

CARTO’s Analytics Toolbox is a suite of functions and procedures that run natively in SQL within the different supported data warehouses. This means that the user can run functions from the Analytics Toolbox using the Python clients from BigQuery, Snowflake, Redshift and so on. In the case of the CARTO Data Warehouse the carto_dw_client provides a wrapper to the BigQuery client, so we will be leveragin the implementation.

here
Analytics Toolbox
Python client for Google BigQuery
Analytics Toolbox for BigQuery